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Abstract

In this paper we present an analysis of a MAC (Medium Access Control) protocol for
wireless sensor networks. The purpose of this protocol is to manage wireless media
access by constructing a Time Division Media Access (TDMA) schedule. APMC
(Approximate Probabilistic Model Checker) is a tool that uses approximation-based
verification techniques in order to analyse the behavior of complex probabilistic
systems. Using APMC, we approximately computed the probabilities of several
properties of the MAC protocol being studied, thus giving some insights about it
performance.
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1 Introduction

Wireless sensor networks are networks using a large number of machines
that embed processors, sensors, actuators and radio communication capabil-
ities. These networks are usually used for environment monitoring and asset
tracking. Individual nodes are usually deployed in an ad hoc maneer, so they
must organize themselves to form a multi-hop wireless communication net-
work [18].

A major issue in such self-organized wireless networks is the access to com-
munication medium, as simultaneous wireless transmissions between neigh-
boring nodes result in collisions that garble exchanged messages. Collision
management and avoidance are fundamental issues in wireless network proto-
cols, and medium access control (MAC) protocols are distributed solutions to
this problem.

In [4], Busch, Magdon-Ismail, Sivrikaya and Yener propose a MAC protocol
for sensor networks. This protocol provides many interesting properties: it
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gives guarantees about the bandwidth that is allocated to each node, it is
fully distributed, and does not require the existence of a global clock.

To analyze the correctness and performance of such distributed protocols,
a lot of methods can be used. One of them is probabilistic model checking, a
class of algorithmic methods for the verification of probabilistic systems with
respect to quantitative properties. Most of these methods are based on the
construction of a mathematical model of the system and on the expression of
the specification in some temporal language. This model represents all the
possible configurations of the system, and the probabilities of the transitions
that can occur between these states.
The problem of evaluating the satisfaction probability of a temporal property
to be checked, is reduced to the resolution of a system of linear equations
over the state space. However, due to the state space explosion phenomenon
during the modeling step, the representation of the transition matrix can be
so large that the verification becomes intractable. To overcome this phe-
nomenon, symbolic and numerical methods have been introduced in tools
such as PRISM [14]. In the last years a completely different model checking
technique emerged: Approximate Probabilistic Model Checking. Using this
technique we can approximately compute the probability that a model verify a
specification [10]. With this method, the computation time is not necessarily
lowered, but the memory consumption becomes very low (or constant in some
cases). Indeed the space complexity of the method is independent of the size
of the model.

The results we present in this paper are twofold: we model a complex
contention-free MAC protocol for wireless sensor networks [4], and we perform
various experiments with this model. We thus show the interest of using
approximate probabilistic model checking for the verification and analysis of
protocols for sensor networks.

The structure of the paper is as follows. In Section 3 we review the frame-
work of approximate probabilistic verification and present the tool APMC.
Then we briefly describe the MAC protocol of [4] (Section 4) and its modeling
(Section 5). Finally, Section 6 gives results of several experiments performed
on our model using APMC.

2 Related Work

Networks now being imagined for sensors [26] and small devices [5] require
energy conservation, scalability, tolerance to transient faults, and adaptivity
to topology change. There essentially exists two kinds of MAC algorithms for
sensor networks [24]:

(i) contention-based protocols : nodes compete for a shared channel, resulting
in probabilistic coordination, e.g. ALOHA [2] and carrier sense multiple
access (CSMA [13]). The CSMA protocol has been widely studied and
extended, and is at the core of widely used standards such as IEEE
802.11 [1].
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(ii) scheduled protocols : nodes collaborate to plan communications so that no
collisions eventually occur. This plan can be based on frequency (FDMA,
frequency division multiple acces), code (CDMA) or time (TDMA), that
are widely used in modern cellular communication systems [20]. Es-
sentially, collisions are avoided by scheduling communications in virtual
sub-channels that are obtained by dividing the real channels either by
time, frequency, or orthogonal codes. Since virtual sub-channels do not
interfere with each other, MAC protocols in this group are essentially
collision-free.

Time Division Media Access (TDMA) is a reasonable technique for man-
aging wireless media access, however the priorities of scalability and fault
tolerance are not emphasized by most previous research. Recent analysis [9]
of radio transmission characteristics typical of sensor networks shows that
TDMA may not always substantially improve bandwidth when compared to
randomized collision avoidance protocols, however fairness and energy con-
servation considerations remain important motivations. In applications with
predictable communication patterns, a sensor may even power down the ra-
dio receiver during TDMA slots where no messages are expected; such timed
approaches to power management are typical of the sensor regime. Among
TDMA protocols especially designed for sensor networks, [11,12] were studied
both theoretically and practically (to get quantitative measures), while the
rather complex protocol presented in [4] was only studied in a theoretical way,
in particular a quantitative analysis was not provided.

The research in the field of methods for approximating probabilistic model
checking is quite young and there is only a few other approaches than our. In
[25], a procedure is described for verifying properties of discrete event systems
based on Monte-Carlo simulation and statistical hypothesis testing. In [22],
a statistical method is proposed for model checking of black-box probabilistic
systems. These approaches differ strongly from ours by using statistical hy-
pothesis testing instead of randomized approximation schemes. More recently,
in [8], a randomized algorithm for probabilistic model checking of safety prop-
erties expressed as LTL formulas was given. In another approach [19] both
random testing and abstract interpretation are used for the verification of C
programs. Only a few things were done for verifying communications protocols
using approximation-based model checking. For instance, APMC was already
used for this purpose in [7,6]. A lot of work have been done on the formal
verification of communication protocols using probabilistic model checking.
One can mention the work of the PRISM team (see, for instance, [15,16]).

3 Approximate Probabilistic Verification and APMC

In this section, we recall the framework of approximate probabilistic verifi-
cation and present quickly the tool APMC (Approximate Probabilistic Model
Checker). APMC is based on a randomised algorithm to approximate the
satisfaction probability of a temporal specification, by using sampling of exe-
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cutions paths of the system.

3.1 Models and specifications

The approximation method of APMC can handle any probabilistic system
that supports execution path generation. The input language is the same
as PRISM and allows to describe in a modular way either discrete-time or
continuous-time Markov chains. The specification language allows to reason
about satisfaction probabilities of temporal logic formulas.
LetM be a discrete-time Markov chain, s be an initial state, and ψ be a lin-
ear temporal logic formula. We denote by Path(s) the set of execution paths
whose first state is s. The probability measure Prob over the set Path(s) is
defined classicaly and we denote by Prob[ψ] the measure of the set of paths
satisfying the formula ψ. Let Pathk(s) be the set of all paths of length k > 0
starting at s and Probk[ψ] be the measure of paths satifying ψ in Pathk(s).
Using the approximation method of APMC, we can approximate, with any
degree of accuracy, the satisfaction probability of a temporal formula. In the
next subsection, for the sake of clarity, we consider only bounded temporal
properties and we describe a randomised algorithm to approximate Probk[ψ].

3.2 Approximate verification

In order to estimate the probability p of a bounded property ψ with a
randomised algorithm, we generate random paths of Pathk(s) and compute a
random variable X which estimates p = Probk[ψ]. We say that an estimation
X is ε-good means if output value of the algorithm is in [p− ε, p+ ε].

Definition 3.1 A randomised approximation scheme (RAS) for p is a ran-
domised algorithm A that takes as input a representation of the system, a
property ψ, two real numbers ε, δ > 0 and produces a value X such that:
Pr

(
X ∈ [p − ε, p + ε]

)
≥ 1 − δ. If the running time of A is polynomial in

|x|, 1
ε

and log(1
δ
), A is said to be fully polynomial.

The probability Pr is taken over the random choices of the algorithm. The
approximation is ε-good with confidence (1 − δ) after a number of samples
polynomial in 1

ε
and log(1

δ
). The main advantage is that, in order to design a

path generator, we only need to simulate the behaviour of the system using a
succinct representation of it (called the diagram).The generic approximation
algorithm of APMC is the following.

Generic approximation algorithm GAA
Input: diagram, k, ψ, ε, δ
Output: approximation of Probk[ψ]
N := ln(2

δ
)/2ε2 ; A := 0

For i = 1 to N do A := A+ Random Path(diagram, k, ψ)
Return Y = A/N
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where the function Random Path is:

Random Path
Input: diagram, k, ψ
Output: samples a path π of length k and check formula ψ on π
(i) Generate a random path π of length k (with the diagram)

(ii) If ψ is true on π then return 1 else 0

In [17], it is proven that GAA is a fully polynomial RAS for computing
p = Probk[ψ] whenever ψ is a bounded temporal property and p ∈]0, 1[. The
randomised algorithm of APMC allows to approximate in polynomial time,
and with very high confidence, satisfaction probabilities of temporal prop-
erties. The main advantage is to eliminate space complexity by using path
generation and efficiently bounding sample size. Moreover this approach is
highly parallelizable and APMC uses a distributed computation model to dis-
tribute path generation and formula verification on a cluster of workstations.

3.3 Architecture and Implementation

APMC includes two independent components: the compiler and the de-
ployer. The APMC compiler takes the model description written with the
PRISM language (a variant of Reactive Modules), and a list of temporal prop-
erties to check on this model. It produces an ad-hoc verifier for this set of
properties over the given model. The output of the compiler is in fact a set of
functions in ANSI C suitable for verifying the properties on the model. This
file lacks a main function and an engine to produce the verification.

Providing the engine and the missing functions for the ad-hoc verifier is
the goal of the deployer. It produces a stand-alone binary which takes only
three parameters: the approximation parameter, the confidence and the paths
length. It then runs the simulation and outputs the approximated probabilities
for each of the temporal formulas. Thus, the deployer provides the working
program suitable for a distributed verification inside a LAN. This distributed
deployment strategy runs in parallel these components on all the participating
nodes and provides the same result with a linear acceleration.

4 Sketch of the protocol

In [4], a probabilistic distributed algorithm for constructing a TDMA
schedule is presented. For each sensor, the time is divided into frames (that
need not be of same length at each node), that in turn are divised into slots
(whose size is for simplicity considered as the same for each sensor. Essentially,
the algorithm has two layers :

(i) the first layer, LooseMAC constructs a TDMA schedule where every sensor
in a neighborhood is able to communicate with no conflicts; however,
some bandwidth may be wasted in this process.

(ii) the second layer, TightMAC allocates the remaining slots so that the other
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Fig. 1. Example execution of LooseMAC

wasted bandwidth is actually used.

In order to cope with sensor removal or arrival, those two layer are alter-
natively used.

The LooseMAC layer can informally be described as follows. Each node
considers that frames are divised into slots of equal size. Then, until a node
has not found a free slot, it randomly chooses a slot and emits a message in
this slot. If no collision is detected (because a neighbor emited a message at
the same time) or reported (because a neighbor received two messages at the
same time, and is experiencing the well known hidden terminal effect), the
time slot is selected by the node. The protocol is examplified in Figure 1.
During Frame A, nodes randomly choose slots. The second and third nodes
notice that a collision occur, while the first node found a collision free slot. In
Frame C, the second and third nodes randomly choose a new slot. The second
node knows that the first node chose the third slot (because it is a direct
neighbor of this node), so it is able to choose a non conflicing slot. However,
the third node chooses a slot that conflicts with the first one. The second node
is then able to report a conflict. In Frame E, the third node is eventually able
to pick a free slot, and the LooseMAC algorithm terminates for all nodes.

The TightMAC layer can informally be described as follows. Each node
repeatedly uses the LooseMAC mechanism until all nodes in the neighborhood
at distance 3 have successfully executed LooseMAC. Then, nodes compute
how many nodes exists in their neighborhood at distance two, that is, the
number φ of nodes they will compete with for obtaining TDMA slots. They
then randomly choose slots in the remaining free slots, but no more than 1/φ
overall. If no collisions are detected or reported, the additional TDMA slots
are gained.

Additional details about the two layers are provided in [4].

5 Modeling

In this section, we describe the modeling of the LooseMAC and TightMac
protocols using the Reactive Module Language.

5.1 LooseMAC

Each sensor is modelled by an independant module. A sensor can be in
one of three modes:

• NEWSLOT , if it has changed its randomly chosen time slot in the current
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frame,

• WATCH, after a whole frame passed since the node in the NEWSLOT
mode chose its time slot,

• READY , if no conflict has occurred in a whole frame and the node was in
the WATCH state.

When every node has reached the READY state, the system is stable, i.e.
the slots chosen are conflict-free. A proof of this protocol is given in [4].

The LooseMAC protocol has been modelled with particular attention paid
to keep the original algorithm apparent. In this perspective, its three main
subparts as described in the appendixes of [4] are clearly distinguished. For a
node i, we have the following:

• Send(): broadcasts the state of the node i in its current time slot. The state
sent consists of the identifier i of the node, its freshness flag, and if it has
detected any conflict in the previous phase. This sending is made only if
the node is in the NEWSLOT mode or if it has detected a conflict.

• Receive(): at every time slot, checks for conflicts or arrival of new nodes. A
conflict is detected if the node received noise, i.e. more than one message,
if some message is received in i’s time slot or if i already received a message
in this time slot before. The node stores any correspondence seen between
node identifiers and time slots.

• UpdateMode(): updates the mode of the node i in its current time slot,
according to the mode switches presented before.

The behavior of the main function of this TDMA protocol is as follows:

LooseMAC

(i) Initialize some internal values

(ii) (a) Call sequentially Send(), Receive() and UpdateMode(),
(b) Increment a local time reference,
(c) Loop to (a).

The protocol assumes that every node increments at regular intervals a
local time reference, interval in which we are sure every possible action are
made. To model this, we define a global time reference. All nodes use this
time reference to wait for the completion of a time frame and increment their
local time reference.

Reactive Modules is a reactive language, so the sequentiality of the opera-
tions has to be simulated. We use the usual transformation to implement the
sequentiality of events through a state which describes the current progress of
each module. This state describes the bold execution regarding the algorithms
presented before, and each algorithms has its own sub states. The equivalence
between the execution of LooseMAC and the internal state of a node i is as
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follows:

Internal State

NotIn {

Init

{
Sending {

Receiving {
UpdateMode {

Ended

{

LooseMAC Main Algorithm

// Node is not in the network
Mode← NEWSLOT
σ ← random slot
while true do

Send() ()
Receive() ()
UpdateMode() ()
TimeReference ← TimeReference + 1
if TimeReference = FrameSize + 1 then

TimeReference ← 1
end if

end while

Fig. 2. Node’s internal state and LooseMAC algorithm

The last state, namely Ended, indicates that the node has finished the
loop iteration. In the original algorithm, it is the moment when the local time
reference is incremented. In our modeling, it corresponds to a synchroniza-
tion between all the processes, so that the global time reference is correctly
updated.

As an example of a sub state in an algorithm, UpdateMode() uses a DoUp-
datemode state in which the newly computed mode, which has been stored in
NewMode, is affected to the actual mode of the node. This avoids clashes
when the mode is tested within UpdateMode().

Since it is assumed that we know a maximum time interval for a com-
munication to complete, they are made quasi-synchronously. When a node i
sends a message to another one, i stores directly its data in the variables of
its recipient and increments a counter of received message in it. Moreover, a
reading is made if and only if all sending are made: this helps knowing if a
node actually received noise, that is to say, more than one message, or a single
message.

In theory, all nodes should execute the same algorithms: the code made so
far is expected to be seen only once in the source files. However, the broad-
casting part of Send() needs a node-dependent information, that is known at
compile-time: its neighbors.

As a consequence, each node module is unique and has to be generated
according to a graph file. XRM 4 , a Reactive Modules preprocessor, has been
used to simplify their writing.

4 XRM: eXtended Reactive Modules, http://www.lrde.epita.fr.
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5.2 TightMac

TightMac and LooseMAC execute themselves in parallel. As a result, the
code for TightMac is an addendum of the previous one. It simply uses the slot
found by LooseMAC to compute another slot on a smaller frame.

As a simplification of the process, the mathematical calculus are made at
compile time. This is made possible thanks to the global knowledge of the
graph at this moment.

6 Experiments

We performed an analysis of the model using APMC 2.0 and 3.0. All
experiments were run using a set of heterogenous workstations ranging from
a simple ATHLON 2 Ghz 512 MB to a bi-Xeon 3.2Ghz 4 GB. We set the
approximation parameter ε = 10−2 and the confidence parameter δ = 10−5.
The first thing to do for the verification, was to set the communication network
topology. We study two topologies : peer to peer communication over a
generated dense graph, and peer to peer over a sparse graph. We give results
for both topologies.

6.1 Properties to be checked

Here is the properties we were interested in. The three first properties
were checked on LooseMAC, and the last ones on TightMac.

Experiment 1. Contention-free from the initial state.

The first experiment we adressed was to verify the correctness of the pro-
tocol. That is we wanted to check that eventually every nodes will become
ready, meaning that each node is given a unique slot for communication, thus
avoid conflicts. More precisely, our goal with this experiment is to check
(experimentally) the validity of the lemma 1 of the extended version of [4].

Experiment 2. A fresh node breaks the stability momentary.

The algorithm LooseMAC is supposed to handle the case of a node joining
or leaving dynamically the network. When a node leave the network, the
algorithm is trivially robust. The problem is what happens when a node join
the network: potentially there could be a conflict. LooseMAC is designed to
be self-stabilizing by forcing some nodes to become non-ready. We verified
this assumption by computing the probability that, when a new node join the
network, some nodes become non-ready shortly (this is the lemma 2 in the
extended version of [4]).

Experiment 3. Contention-freeness after a node joining the network.

The last experiment we did on LooseMAC was to check wether all node
become ready after a new arrival, thus ensuring that the algorithm is self-
stabilizing.

Experiment 4. Probability of conflict.

The lemma 5 of the extended version of [4] state that for a particular node,
the probability of a conflict occuring in the neighborhood of this node within
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a number of time slots equal to the size of the frame is at most 1/2. We
verified an abstract version of this property to ensure finally the correctness of
the TightMac protocol. One might say that it is not interesting to verify this
property since we can verify directly the correctness of the protocol. This is
indeed true, but this verification show that we can validate the intermediate
steps of a complex algorithm automatically.

Experiment 5. Stability of the network

Our last experiment is to compute the probability of a node to successfully
choose a conflict-free time slot. And to check wether all nodes become conflict-
free. This ensure that the network state is stable (corollary 6 of the extended
version of [4]).

6.2 experimental results

Since the properties we checked on the protocol have been proven in [4], the
experimental results are not surprising. However, they prove the effectiveness
of our approach.

Results for LooseMAC

Figures 3 and 4 present the experimental results for experiments 1 to 3
over sparse and dense networks for two frame sizes (32 and 64 respectively).

The green line of experiment 2 shows that the probability that the system
detects the apparition of a node is one. There is no executions where a new
sensor enters the system and none of its neighbours do not acknowledge this
by selecting the state NON-READY. This result holds for all topologies, and
whatever the frame size.

This is a direct consequence of the protocol, since the new process will send
a beacon message when entering the network. All the neighbour processes will
note this either by noting that one of the slots that where not used before is
now used, or that there is a collision on the slot randomly chosen by the new
process.

The red curve of experiment 3 measures the probability that the system
is converged (all nodes are in the READY state) according to the time. This
curve exhibits a logarithmic convergence time, quickly reaching the probabiliy
one after a warmup time. Comparing figures 3(a) and 3(b), or figure 4(a)
and 4(b), one can see that the sparse network provides a better percentage of
converging executions at a given time, thus demonstrating that the average
convergence time is quicker for sparse graphs than dense graphs. This is due
to the fact that the probability of conflict is lower with a small neighborhood.

Comparing figures 3(a) and 4(a), or figures 3(b) and 4(b), one can see
that with a double frame size, the convergence time is slower. This is not
obvious, since a double frame size induces a larger space to place the slots,
thus a higher probability that a node chooses an empty slot. However, since
the protocol works in phases and each node waits for the expiration of the
frame before testing the collision status, a double frame size implies an overall
slower convergence time. This illustrates a treadoff on this frame size, which
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should be short enough to provide a good response time and frequent testing
of collision, but large enough to ensure a good probability of finding an empty
slot.

The last experiment illustrated in figures 3 and 4 is experiment 3, repre-
sented by the blue curve. It measures the probability that the system con-
verges within a given time unit. The time unit presented here has its origin
at the insertion of the new node, after the system has converged without it.
One can see that the convergence time exhibits the same behavior as from an
initial configuration where none of the nodes are in the READY state, but
with a longer warmup phase. The warmup phase is longer, since the insertion
of the new node can imply a modification of the slots of all the components of
the system, and the failure detection has first to propagate to all the nodes.
Moreover, one can see that the warmup time depends on the frame size, thus
emphasizing the impact of the failure detection, which happens only once in
every frame.

Results for TightMac

Figure 5 presents the result of experiment 5 over a sparse network with
a LooseMAC framesize of 32, as in figures 3(b). One can see that the con-
vergence time of the TightMac algorithm follows the same behavior as the
LooseMAC algorithm it uses. The TightMac algorithm can converge only when
the LooseMAC algorithm is also converged, and this explains why it follows
the same tendency.

At the time we write this article, the experiment 4 is still running and we
cannot include the results in this version. Additional figures, presenting the
results obtained with experiment 4 will be included in the final version.

7 Conclusion

In this paper, we presented an analysis, using approximate probabilistic
model checking, of the contention-free MAC protocol of [4]. We showed that
this kind of method allows to efficiently verify/analyze the correctness and per-
formance of complex distributed algorithms over sensor networks. Using these
methods we can free ourselves from the state space explosion phenomenon aris-
ing with classical model checking techniques. However the numerical results
we give are accurate only with respect to an approximation parameter (ε here)
and in order to modelise efficiently the protocol we were required to add some
constraints (such as a global timer) to make the model tractable for APMC.
We also used extensively additional tools in order to generate the model, since
sensor networks are very demanding objects to modelize.

Acknowledgments Many thanks goes to Benoit Sigoure for providing us
pre-processing tools for Reactives Modules.
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