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Abstract

A languageL over an alphabetA is said to have aneutral
letterif there is a lettere ∈ A such that inserting or deleting
e’s from any word inA∗ does not change its membership (or
non–membership) inL.

The presence of a neutral letter affects the definability of a
language in first–order logic. It was conjectured that it ren-
ders all numerical predicates apart from the order predicate
useless, i.e., that if a languageL with a neutral letter is not
definable in first–order logic with linear order, then it is not
definable in first–order logic with any setN of numerical
predicates.

We investigate this conjecture in detail, showing that it fails
already forN = {+, ∗}, or, possibly stronger, for any setN
that allows counting up to them times iterated logarithm,
lg(m), for any constantm.

On the positive side, we prove the conjecture for the case
of all monadic numerical predicates, forN = {+}, for
the fragmentBC(Σ1) of first–order logic, and for binary
alphabets.
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1 Introduction

Logicians have long been interested in the relative expres-
sive power of different logical formalisms. In the last
twenty years, these investigations have also been motivated
by a close connection to computational complexity theory
— most computational complexity classes have been given
characterisations as finite model classes of appropriate log-
ics, cf. [Imm98]. In these investigations it became apparent
that in order to describe computation over a finite structure,
a formula has to be able to refer to some linear order of the
elements of this structure. Given such an order, the universe
of the structure, i.e., the set of its elements, can be identified
with an initial segment of the natural numbers. In a logic
with the capability to express induction we can then define
predicates for arithmetical operations such as addition or
multiplication on the universe, and use them in order to de-
scribe operations on time or memory locations. In weak
logics, however, e.g., first–order logic, defining an order re-
lation does not automatically make arithmetic available. In
fact, even over strings, the expressive power of first–order
logic varies considerably, depending on the set of numerical
predicates that can be used.

As an example, if the order is the only numerical rela-
tion then the onlyregular languages that can be defined
in first–order logic are the star–free languages. If, how-
ever, for everyp ∈ N we have available the predicatemodp

(which holds for a numberm iff m ≡ 0 (mod p)) then
we can express regular languages that are not star–free,



such as(000 + 001)∗. In fact, with these predicates we
can expressall the first–order definable regular languages,
cf. [Str94]. Thus, even very powerful relations (arithmetical
relations, or even undecidable ones) are of no further help
in defining regular languages. On the other hand, with ad-
dition, we can express languages that are not regular, such
as{0n1n / n∈N}.

First-order logic with varying numerical predicates can also
be thought of as specifying circuit complexity classes with
varying uniformity conditions[BIS90]. The language de-
fined by a first-order formula is naturally computed by a
family of boolean circuits with constant depth, polynomial
size, and unbounded fan-in (called “AC0 circuits”). The
power of such a family depends in part on the sophistication
of the connections among the nodes. A formula with only
simple numerical predicates leads to a circuit family where
these connections are easily computable. These are called
“uniform circuits”, and how uniform they are is quantified
by the computational complexity of a language describing
the connections. A formula with arbitrary numerical predi-
cates leads to a circuit family with arbitrary connections —
the set of languages so describable is called “non-uniform
AC0”.

There are languages, such as the PARITY language, for
which we can prove noAC0 circuit exists [Ajt83, FSS84].
A major open problem in complexity theory is to develop
methods for showing languages to be outside of uniform cir-
cuit complexity classes even if they are in the corresponding
non-uniform class. This is an additional motivation for the
study of the expressive power of first-order logic with vari-
ous numerical predicates, as this provides a parametrization
of various versions of “uniformAC0”.

In an attempt to obtain a better understanding of this expres-
sive power, Thérien considered the concept of aneutral let-
ter for a languageL, i.e., a lettere that can be inserted into
or deleted from a string without affecting its membership in
L. Since, in the presence of such a letter, membership inL
cannot depend on specific (combinations of) letters being in
specific (combinations of) positions, it seemed conceivable
that neutral letters would render all numerical predicates,
except for the order, useless. With this in mind, Thérien
proposed what was later dubbed theCrane Beach Conjec-
ture:

If a language with a neutral letter can be defined
in first–order logic using some setN of numerical
predicates then it can be so defined using only the
order relation.

One particular example of a language with a neutral letter is
PARITY, consisting precisely of those0–1–strings in which
1 occurs an even number of times. PARITY is not definable
in first–order logic – no matter what numerical predicates

are used (cf. [Ajt83, FSS84]). The Crane Beach conjecture
would imply this result, since PARITY is a regular language
known not to be star–free.

In this paper, we investigate the Crane Beach conjecture in
detail. We first show that in general it is not true — in fact,
it already fails forN = {+, ∗}. However, we also show
that the conjecture is true in a number of interesting special
cases, including the case of addition, i.e., whenN = {+}.

This work is closely related to a line of research in data
base theory which is concerned with so–calledcollapse re-
sults (cf. [BL00]). Here one considers a finite data base
embedded in some infinite, ordered domain, and then looks
at locally genericqueries, i.e., queries which are invariant
under monotone injections of the data base universe into the
larger domain. In this setting, a language with a neutral let-
ter is the special case of a locally generic (Boolean) query
over monadic databases with background structure〈N,N〉,
and the conjecture then can be translated into a collapse for
first–order logic.
We will come back to this in connection with Theorem 3.12.
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2 Preliminaries

2.1 First–Order Logic

A signatureis a setσ containing finitely many relation, or
predicate, symbols, each with a fixed arity. Aσ–structure
A = 〈UA, σA〉 consists of a setUA, called theuniverseof
A and a setσA that contains an interpretationRA ⊆ (UA)k

for eachk–ary relation symbolR ∈ σ.
In this paper, we are concerned almost exclusively with
first–order logic over finite strings. In this context, for an
alphabetA we use the signatureσA := {Qa / a ∈ A}
and identify a stringw = w1 · · ·wn ∈ A∗ with the struc-
turew = 〈{1, . . . , n}, σw

A〉, whereσw
A = {Qw

a / a∈A} and
Qw

a = {i ≤ n /wi = a}, i.e, i ∈ Qw
a ⇐⇒ wi = a, for all

a ∈ A.
In addition to the predicatesQa we also havenumerical
predicates. A k–ary numerical predicateP has, for every
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n ∈ N, a fixed interpretationPn ⊆ {1, . . . , n}k. Our prime
example of a numerical predicate is the linear order rela-
tion ≤. Where we see no danger of confusion (i.e., almost
everywhere) we will not distinguish notationally between a
predicate and its interpretation.
An atomic σ–formula is either of the formx1 = x2,
or P (x1, . . . , xk), wherex1, x2, . . . , xk are variables and
P ∈ σ is ak–ary predicate symbol. First–orderσ–formulas
are built from atomicσ–formulas in the usual way, using
Boolean connectives∧, ∨, ¬, etc. and universal (∀x) and
existential (∃x) quantifiers.
For every alphabetA, and every setN of numerical predi-
cates, we will denote the set of first–orderσA∪N–formulas
by FO[N ]. We define semantics of first–order formulas in
the usual way. In particular, for a stringw ∈ A∗ and a for-
mulaϕ ∈ FO[N ] without free variables (i.e., variables not
bound by a quantifier), we will writew |= ϕ if ϕ holds on
the stringw. If x1, . . . , xk are the free variables ofϕ, and
if p1, . . . , pk ≤ |w|, w |= ϕ(p1, . . . , pk) indicates thatϕ
holds on the stringw with xi interpreted aspi, for every
i ≤ k.
Every formulaϕ ∈ FO[N ] without free variables defines
the setLϕ of thoseA–strings which satisfyϕ. We say
that a languageL ⊆ A∗ is definable inFO[N ], and write
L ∈ FO[N ], if L = Lϕ, for someϕ ∈ FO[N ]. We will
use analogous notation for subsets ofFO[N ], in particular,
we will consider the setΣ1[N ] of formulas which are of the
form ∃x1 · · · ∃xrψ, for some quantifier–freeψ ∈ FO[N ],
and its Boolean closure,BC(Σ1[N ]). (One can define a
complete hierarchy of classesΣi[N ] andΠi[N ] along with
their Boolean closures, using the hierarchy of first-order for-
mulas given by the number of quantifier alternations. But in
this paper we will have need only forBC(Σ1[N ]).

2.2 Ehrenfeucht–Fräısśe Games

One of our main technical tools will be (various versions
of) the Ehrenfeucht–Fräısśe game. In our context, the
Ehrenfeucht–Fraı̈ssé game for a set of numerical predicates,
N , is played by two players, Spoiler and Duplicator, on two
stringsu, v ∈ A∗. There is a fixed numberk of rounds, and
in each roundi

• first, Spoiler chooses one position,ai in u, or a position
bi in v;

• then Duplicator chooses a position in the other string,
i.e., abi in v, if Spoiler’s move was inu, and anai in
u, otherwise.

After k rounds, the game finishes with positionsa1, . . . , ak

chosen inu andb1, . . . , bk chosen inv. Duplicator has won
if the mappingai 7→ bi, i = 1, . . . , k, is apartial σA ∪N–
isomorphism, i.e., if

• for everyi, j ≤ k, ai = aj ⇐⇒ bi = bj ,

• for everyi ≤ k, ai andbi carry the same letter, i.e.,
uai

= vbi
, and

• for every m–ary predicateP ∈ N , and every
i1, . . . , im ≤ k, it holds thatP (ai1 , . . . , aim

) ⇐⇒
P (bi1 , . . . , bim

).

If Duplicator has a winning strategy in thek–round game
for N on two stringsu andv, we writeu ≡N

k v. The funda-
mental use of the game comes from the fact that it charac-
terises first–order logic (c.f., e.g., [EFT94]). In our context,
this can be formulated as follows:

2.1 Theorem (Ehrenfeucht, Fraı̈ssé)
A languageL ⊆ A∗ is definable inFO[N ] iff there is a
finite subsetN ′ of N and a numberk such that, for every
u ∈ L, v 6∈ L, Spoiler has a winning strategy in thek–round
game forN ′ onu andv. �

We will also use the following variant of the game:
In the single–roundk–game forN on two stringsu, v

• first, Spoiler choosesk positionsa1, . . . , ak in u, or
b1, . . . , bk in v;

• then Duplicator choosesk positions in the other string,
i.e., positionsb1, . . . , bk in v, if Spoiler’s move was in
u, a1, . . . , ak in u, otherwise.

Again, Duplicator wins iff the mappingai 7→ bi, i =
1, . . . , k, is a partial isomorphism. Clearly, if Duplicator
has a winning strategy for the single–roundk–game onu
andv, then she also has one for the single–roundh–game,
for all h ≤ k.
This game characterises the expressive power of
BC(Σ1[N ]):

2.2 Theorem
A languageL ⊆ A∗ is definable inBC(Σ1[N ]) iff there
is a finite subsetN ′ of N and a numberk such that, for
everyu ∈ L, v 6∈ L, Spoiler has a winning strategy in the
single–roundk–game forN ′ onu andv. �

3 The Crane Beach Conjecture

Intuitively, since numerical predicates can only talk about
positionsin strings, it seems that they can only help ex-
press properties that depend on certain (combinations of)
letters appearing in certain (combinations of) positions.The
Crane Beach Conjecture (named after the location of its
first, flawed, proof) is an attempt to make that intuition pre-
cise.
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3.1 Definition (Neutral letter)
Let L ⊆ A∗. A letter e ∈ A is calledneutral for L if for
anyu, v ∈ A∗ it holds thatuv ∈ L ⇐⇒ uev ∈ L. �

Thus membership in a language with a neutral letter cannot
depend on the individual positions on which letters are: any
letter can be moved away from any position by insertion or
deletion of neutral letters. It seems therefore conceivable
that for every such language, if it can be defined at all in
first–order logic then it can be defined using the linear order
as the only numerical relation.

3.2 Definition (Crane Beach Conjecture)
Let N be a set of numerical predicates. We say thatthe
Crane Beach conjecture is true forN , iff every language
L ∈ FO[≤,N ] that has a neutral letter is also definable in
FO[≤]. �

It turns out that the conjecture is true for some sets of nu-
merical predicates, but not for all. In fact, it fails for theset
N = {+, ∗}. This set of predicates is particularly important
becauseFO[+, ∗] corresponds to the most natural uniform
version of the circuit complexity classAC0 [BIS90].
Our counterexample to the Crane Beach conjecture makes
use of the well-known but somewhat counterintuitive ability
of FO[+, ∗] formulas tocountletters up to numbers poly-
logarithmic in the input size:

3.3 Definition (Definibility of Counting)
Letf(n) ≤ n be a nondecreasing function fromN to N. We
say that a logical system cancount up tof(n) if there is a
formulaϕ such that for everyn and for everyw ∈ {0, 1}n,

w |= ϕ(c) ⇐⇒ c ≤ f(n) ∧ c = #1(w),

where#1(w) is the number of ones inw.

We will need to consider two functions with similar nota-
tion. We write the base-two logarithm ofn as lg n, the
k’th power of this logarithm as(lg n)k, and thek’th iter-
atedlogarithm aslg(k) n. For example,lg(2) n is the same
aslg(lg n).

3.4 Proposition ([AB84, FKPS85, DGS86, WWY92])
The systemFO[+, ∗] can count up to(lg n)k for anyk. If
f(n) = (lg n)ω(1), andN is any set of numerical predi-
cates, thenFO[≤,N ] cannot count up tof(n).

3.5 Theorem
There is a languageL with a neutral letter that is definable
in FO[+, ∗] but not inFO[≤].

Proof:

We define a languageA on alphabet{0, 1, a} as follows.
For each positive integerk, A will contain a string con-
sisting of the2k binary strings of lengthk, in order, sep-
arated bya’s. The total length of thek’th string inA is thus
2k(k + 1) − 1. The first three strings inA are thus0a1,
00a01a10a11, and

000a001a010a011a100a101a110a111.

Our desired languageB has alphabet{0, 1, a, e} and is sim-
ply the set of stringsw over this alphabet such that the string
obtained by deleting all thee’s in w is inA. ClearlyB has
a neutral lettere, as inserting or deletinge’s cannot affect
membership inB. ClearlyB is not regular, so it cannot be
in FO[≤]. It remains for us to prove:

3.6 Lemma
B is definable inFO[+, ∗].

Proof:
We need to formulate a sentence ofFO[+, ∗] that will hold
for a string exactly if it is inB, that is, exactly if its non-
neutral letters form a string inA. Recall that a stringw is in
A exactly if for some numberk,w consists of the2w binary
strings of lengthk, in order, separated bya’s.
Our sentence will assert the existence of a numberk such
that the input string, withe’s removed, is thek’th string
in the languageA. Since the length of thek’th string in
A is exponential ink, and a valid input string must be at
least as long, any validk must be at mostlgn. Therefore by
Proposition 3.4, the systemFO[+, ∗] is able to count letters
in any interval in the input string up to a limit ofk.
We first assert that there are exactlyk 0’s and no1’s before
the firsta, exactlyk 0’s and1’s between each pair ofa’s,
exactlyk 1’s (and no0’s) after the lasta. It then remains to
assert that each string of0’s and1’s between twoa’s is the
successor of the previous one. To do this, we assert that for
every positiony containing a0 or 1:

• If there is a positionw left of y such that there is a0 or
1 aty and exactlyk − 1 0’s and1’s betweenw andy,

• Thenw has the same letter asy unless

• x has the uniquea betweenx andy, z has the nexta
to the right ofx or is the rightmost position if there is
no sucha,

• w has1, there are no0’s betweenw andx, y has0, and
there are no1’s betweeny andz, or

• w has0, there are no0’s betweenw andx, y has1, and
there are no0’s betweeny andz.

This proves Lemma 3.6 and thus Theorem 3.5. �
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Theorem 3.5 now follows immediately. �

The construction above crucially uses the fact that we can
count up tolgn in FO[+, ∗]. We can strengthen the con-
struction so that it provides a counterexample using only
counting up tolg(m) n, them times iterated logarithm ofn.
However, we do not yet know whether this strengthening is
non-trivial — it may be that any set of numerical predicates
that allows counting up tolg(m) n also allows counting up
to lg n.

3.7 Proposition
If the systemFO[≤,N ] can count up tolg(m) n for some
m, then there is a languageL with a neutral letter that is
definable inFO[≤,N ] but not inFO[≤].

Proof:
We must show that counting up tolg(m) n suffices to pro-
vide a counterexample to the Crane Beach conjecture. We
give the construction in some detail form = 2, indicating
how to generalize it to arbitrary values form. Take the al-
phabet{a, b, 0, 1, e} and for everyk consider strings of the
form (b(0 + 1)k(a(0 + 1)k)∗)∗b. Finally, adde as a neutral
letter. a andb are used as markers, and we interpret the0–
1–substring between any two successive markers as the bi-
nary representation of some number between0 and2k − 1.
If x is any position, we defineblock(x) to be the interval
between the two markers nearestx, andnum(x) to be the
number represented by the0–1 subsequence inblock(x).
Using a formula that can count up tok and the construction
from the proof of Theorem 3.5 we can write formulas ex-
pressingnum(x) = num(y) andnum(x) + 1 = num(y),
respectively. We can now express easily that between ev-
ery successive occurences of twob’s each number from0 to
2k − 1 is represented precisely once. In other words, this
formula stipulates that the{a, 0, 1}–substring between two
b’s represent a permutation of the numbers0, . . . , 2k − 1.
Finally, we write a formula that expresses that all permuta-
tions are represented. Altogether, our formula defines the
set of those strings which consist of a sequence of permuta-
tions of the numbers0, . . . , 2k−1, for somek, containing
every permutation at least once. In particular, every such
string has lengthΩ(2k!), whereas counting is only required
up tok = O(lg lg(2k!)).
To be more precise, the formula forces all permutations to
be present as follows. It says that for every represented
permutationπ (starting, say, with ab at positionp), and
every pair of positionsi, j within that permutation (i.e.,
p < i < j < p′, wherep′ is the smallest position> p
that carries ab), there is a permutationρ (betweenb’s at q
andq′, say) which is equal toπ, except thatnum(i) and
num(j) are swapped. In what follows we will use abbre-
viationsfirst(x) and last(x) for formulas which express

thatx lies in the first, respectively last, block of some per-
mutation;next(x) will denote the first position in the block
directly to the right ofblock(x). Our formula fori andj
now expresses the following for allr, s such thatp < r < p′

andq < s < q′:

• num(r) = num(s) → num(next(r)) =
num(next(s))
unless last(r) or {num(r), num(next(r))} ∩
{num(i), num(j)} 6= ∅

• (num(r)=num(s) ∧ num(next(r))=num(i)) →
num(next(s))=num(j)

• (num(r)=num(s) ∧ num(next(r))=num(j)) →
num(next(s))=num(i)

• (num(s)=num(j) ∧ ¬last(s)) →
num(next(s))=num(next(i))

• (num(s) = num(i)∧¬last(s)) → num(next(s)) =
num(next(j))

• (first(r) ∧ first(s) ∧ num(r) 6= num(i)) →
num(r) = num(s)

• (first(r) ∧ first(s) ∧ num(r) = num(i)) →
num(s) = num(j).

Thus we can construct the desired formula form = 2.
We can then iterate this process, using an additional marker
symbolc. The resulting formula stipulates that our string
represent all permutations of all the permutations of the
numbers0, . . . , 2k − 1. This will guarantee that string to
be of lengthΩ(((2k)!)!), etc. �

It is not difficult to code the languages above using only
two non–neutral letters: just apply the homomorphism
{a, b, 0, 1, e}∗ → {0, 1, e}∗ which mapse to e, a to 010,
b to 0110, 0 to 01110, and1 to 011110, for example. How-
ever, with only one non–neutral letter there is no way of
defeating the conjecture.

3.8 Theorem
If |A| = 2 then for every setN of numerical predicates and
every languageL ⊆ A∗ with a neutral letter it holds that
L ∈ FO[≤,N ] =⇒ L ∈ FO[≤].

Proof:
Let L be a language on{1, e} with e as a neutral letter.
Consider the set of numbersn such that1n is inL and1n+1

is not. If this set is finite, it is easy to see thatL is regular
and definable inFO[≤]. Otherwise, we will show that no
family of unbounded fan-in circuits with constant depth and
polynomial size can recognizeL— it follows from [BIS90]
thatL is not definable inFO[≤,N ] for anyN .
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For these particular values ofn, any circuit deciding
L on strings of length2n would compute a symmet-
ric function of the inputs saying yes on inputs withn
1’s and no on inputs withn + 1 ones. Following the
construction of [FKPS85], a constant-depth poly-size
combination of these circuits can be used to compute
the parity function on inputs of this size. If the circuit
decidingL had constant depth and polynomial size, then
this new circuit would compute the parity function inAC0

for infinitely many input sizes, violating [Ajt83, FSS84].�

Since PARITY is a non–star–free regular language over
{0, 1}∗ and has a neutral letter, Theorem 3.8 implies the
nonexpressibility of PARITY in first–order logic with arbi-
trary numerical predicates (i.e., AC0). Note, however, that
it directly uses the existing proofs of the nonexpressibility
of PARITY to get this result.
On the other hand, the following special case of the Crane
Beach conjecture can be proved directly:

3.9 Theorem
The Crane Beach conjecture holds for the set of all monadic
relations.

Proof:
LetL be a language with a neutral letter that is not definable
in FO[≤]. This means that for any number of movesk
there must be two stringsy ∈ L andz 6∈ L such that the
Duplicator wins thek-move game (using only≤) on y and
z. By adding neutral letters we can makey andz have the
same lengthm.
Now let N be any monadic predicate. We will show that
L is not definable inFO[≤,N ] as follows. We will useN
to construct two stringsu ∈ L andv 6∈ L from y andz by
suitable padding with neutral letters. (The length ofu andv
will be a suitably large numbern to be defined below.) Then
we will show how the Duplicator can win thek-move game
onu andv, with both≤ andN as numerical predicates.
The predicateN may be regarded as acoloring of the in-
put positions from1 to n, with finitely many colors. Ifr
ands are input positions, consider the colored string given
by the interval fromr to s, with each input position hold-
ing a neutral letter. For any two such strings, consider the
k-move game with only≤ as numerical predicate and the
colors considered as the input. Let two strings be consid-
ered equivalent iff the Duplicator wins this game on them.
Since the language defined by this game is regular, there are
only afinite numberof equivalence classes. We now define
a colored undirected graph whose vertices are thesen input
positions and where the color of the edge from positionr
to positions represents the equivalence class of the colored
string for that interval.
By the Erdos-Szekeres Theorem [ES35], as long asn is
greater thanmd whered is the number of edge colors, there

must be amonochromatic pathin the graph of length at least
m. We createu from y, andv from z, by placing the letters
of the shorter strings in the locations given by the vertices
of these path (the “special locations”), and making all other
letters neutral. We must now explain how the Duplicator
can win the game with≤ andN on the stringsu andv (the
“Big Game”).
The Duplicator will model the Big Game by a series of
“small games”, where she already has a winning strategy
for each. One small game is played on the stringsy and
z using only≤, and there is another small game (using≤
and color only) for each interval between special locations.
Whenever the Spoiler moves in the Big Game, the Dupli-
cator translates this move into they-z small game by mov-
ing to the position matching the next special position to the
right. She also translates it into the small game for that inter-
val. The Duplicator’s reply in the Big Game is determined
by her correct move in they-z game, and her correct move
in the special small game for that particular interval.
After k moves Delilah must win the original Small Game
and all the interval Small Games, as she has made at most
k moves in each. It is easy but tedious to look at the input
predicates, order, equality, and position color in the Big
Game and verify that Delilah has won that as well. �

We can use Theorem 3.9 to derive the following interest-
ing generalization of the nonexpressibility of PARITY. But
again, we do not get anindependentproof of this fact be-
cause the existing proofs are used crucially to obtain the
results in [BCST92].

3.10 Corollary
The Crane Beach conjecture holds for all regular languages.
That is, for every setN of numerical predicates and every
regular setL with a neutral letter it is true that thatL ∈
FO[≤,N ] =⇒ L ∈ FO[≤].

Proof:
This follows from Theorem 3.9 and the fact, proven
in [BCST92], that every regular language definable in
FO[≤,N ] (using any setN of numerical predicates) is
definable inFO[≤, {modp / p ∈ N}], wheremodp(i) is
true iff i ≡ 0 mod p. �

Although according to Theorem 3.9 the Crane Beach con-
jecture holds for the set of all unary relations, it is not true
for all binary relations, sinceFO[≤,+, ∗] = FO[≤,Bit],
c.f., [Imm98]. In fact, it already fails for the set of all unary
functions, or for the set of all linear orderings. This follows
from the existence of a unary functionf : N → N (see
the proof of Theorem 3 in [Sch97]) and a setO of linear or-
derings (in fact, four order relations suffice, cf.[ScSc]) such
thatFO[≤,+, ∗] = FO[≤,Bit] = FO[≤, f ] = FO[≤,O].

6



We can also consider special cases of the Crane Beach con-
jecture based on restrictions on the type of logical formulas
allowed. For example, with arbitrary sets of numerical rela-
tions the conjecture does hold for Boolean combinations of
Σ1–formulas:

3.11 Theorem
Let N be a set of numerical predicates, and letL be a
language with a neutral letter that is definable in the class
BC(Σ1[≤,N ]). ThenL ∈ BC(Σ1[≤]).

Proof:
We must show that for any setN of numerical predicates
and any languageL with a neutral letter,L is definable in
BC(Σ1[≤,N ]) iff it is definable inBC(Σ1[≤]).
Using Theorem 2.2, we first show the proposition for the
special caseN = {suc,min,max}, wheresuc is the suc-
cessor relationsuc(n,m) iff m = n+1, 〈w, n〉 |= min(n)
iff x=1, and〈w, n〉 |= max(n) iff n = |w|.
Lete be the neutral letter, and assume thatL 6∈ BC(Σ1[≤]).
Then, for everyk, there are stringsu ∈ L, v 6∈ L such that
Duplicator wins the single–roundk–game for≤ on u, v.
We can assumeu and v to be of the same lengthm (if
not, append|v|+k e′s to u and |u|+k e′s to v). We con-
struct stringsU from u andV from v such thatU ∈ L,
V 6∈ L, and Duplicator wins the single–roundk–game
for {≤, suc,min,max} on U, V . ThenL 6∈ BC(Σ1[≤
, suc,min,max]), which proves the assertion, by contrapo-
sition.
In order to constructU , insert2k−1 e′s between each pair
of adjacent positions inu, as well as at the beginning and
the end ofu. More precisely,U = U1 · · ·Um2k+2k−1, with
Uj2k = uj , andUj2k+i = e, for any j ≤ m, i < 2k.
Similarly, we constructV from v. Sincee is neutral, we
haveU ∈ L, V 6∈ L.
Assume that Spoiler chooses positionsa1, . . . , ak in U (the
other case is symmetric). Some (possibly all, or none) of
theUaj

will be neutral letters, others will be fromA \ {e}.
For the sake of notational simplicity we will assume, with-
out loss of generality, thatUa1

, . . . , Uaq
∈ A \ {e}, and

Uaq+1
= · · · = Uak

= e. Then eachaj with j ≤ q is of
the formsj2k, for somesj ∈ {1, . . . ,m}. Now Duplica-
tor simulates a move of Spoiler in the game for≤ on u, v
in which Spoiler pebbless1, . . . , sq onu, and finds her re-
ply, s′1, . . . , s

′
q onv, according to her winning strategy. She

then sets, for eachj from 1 throughq, bj to bes′j2k. Then
for eachj, j′ ≤ q it holds that

• bj 6= bj′+1 andaj 6= aj′+1,

• bj ≤ bj′ ⇐⇒ aj ≤ aj′ , and

• Vbj
= vs′

j
= usj

= Uaj
.

To complete this move, Duplicator has to define
bq+1, . . . , bk such thatVbq+1

= · · · = Vbk
= e, and that

for all j, j′ ≤ k

• bj ≤ bj′ ⇐⇒ aj ≤ aj′ ,

• bj = bj′+1 ⇐⇒ aj = aj′+1, and

• bj = 1 ⇐⇒ aj = 1, bj = |V | ⇐⇒ aj = |U |.

Suchbq+1, . . . , bk can easily be found, since between any
two differentbi, bj with i, j ≤ q, there are at least2k−1
positionsp whereVp = e.

Now letN be an arbitrary finite set of numerical predicates
and assume thatL 6∈ BC(Σ1[≤]). From what we have
just shown it follows that, for everyk, we can find strings
u ∈ L, v 6∈ L of the same lengthm such that Duplica-
tor has a winning strategy in the single–round2k+2–game
for ≤, suc,min,max onu, v. We want to construct strings
U andV by inserting neutral letters intou andv, respec-
tively, in such a way that the original letters ofu and v
are moved onto positionsi1, . . . , im which are, in a cer-
tain sense, highly indistinguishable. To this end, we define,
for every numbern, a coloring of subsets of sizeh ≤ 2k of
{1, . . . , n}. This coloring was inspired by the one used by
Straubing in [Str01], in his proof of Theorem 8. There he
used the following extension of Ramsey’s theorem, which
will also help us here:

Theorem Let m, k, c1, . . . , ck > 0, with k ≤ m. Let n
be sufficiently large as a function ofm and thec’s. If all
h–element subsets of{1, . . . , n}, with 1 ≤ h ≤ k, are col-
ored from a set ofch colors, then there exists anm–element
subsetT of {1, . . . , n} such that for eachh with 1 ≤ h ≤ k
there exists a colorκh such that allh–element subsets ofT
are coloredκh. �

LetT = {τ1, . . . , τq} be the set of all atomic formulas over
N ,≤ on variablesx1, . . . , xk, y1, . . . , yh. TheN ,≤–type
of a tupler = (r1, . . . , rk) ∈ {1, . . . , n}k with respect
to ah–element setS = {p1 < · · · < ph}, α(r, S), is the
set of all those formulas ofT that are satisfied whenxi is
interpreted asri, andyj aspj , for i ≤ k andj ≤ h.
We now color, for each numbern and everyh ≤ 2k, every
h–element setS = {p1 < · · · < ph} ⊆ {1, . . . , n} with
the set of all thoseα ⊆ T for which there is ak–tupler
over{1, . . . , n} such thatr hasN–typeα with respect to
S. Clearly, for everyh ≤ 2k there is a fixed number of
possible colors, independent ofn. The extension of Ram-
sey’s theorem stated above tells us that for large enoughn
we can find numbersi1 < · · · < im ≤ n such that, for
everyh ≤ 2k, all h–element subsets of{i1, . . . , im} have
the same color. We now insert neutral letters intou in such
a way that in the resulting stringU we haveUis

= us, for
s = 1, . . . ,m, andUi = e for all i 6∈ {i1, . . . , im}. In the
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same way we constructV from v. Let us calli1, . . . , im the
special positions.
We now show that Duplicator has a winning strategy in the
k–game for≤,N on U, V . Assume that Spoiler chooses
a = a1, . . . , ak in U (again, the other case is symmet-
ric). Then Duplicator finds, for everyaj the next small-
est special positionisj

, i.e, isj
≤ aj < isj+1. Let

S = {isj
, isj+1 / j = 1, . . . , k}. Duplicator now simulates

a move of Spoiler in the2k+2–game for≤, suc,min,max
onu, v, in which Spoiler plays all the pointssj andsj+1,
for j = 1, . . . , k on u, as well asmin andmax. Using
her winning strategy in this game, Duplicator finds a reply
with which she wins the game for≤, suc. Therefore, we
can safely call these pointstj , tj+1, for j = 1, . . . , k, and
we know thatusj

= vtj
, for j = 1, . . . , k. Let T be the

set{itj
, itj+1 / j = 1, . . . , k}. |T | = |S| = h ≤ 2k, so

S andT have the same colour, and this implies that there is
a tupleb = (b1, . . . , bk) with the sameN–type asa, and
with ω(b, T ) = ω(a, S). Duplicator now puts her pebbles
on b1, . . . , bk in V . We have to check the winning condi-
tions. By construction,α(a, S = α(b, T ). In particular, this
implies that

• (a1, . . . , ak) and(b1, . . . , bk) have the sameN–type,

• aj ≤ aj′ ⇐⇒ bj ≤ bj′ , for all j, j′,

• if aj = isj
thenbj = itj

henceUaj
= usj

= vtj
=

Vbj
. If aj is not of this form thenisj

< aj < isj+1,
consequently,itj

< bj < itj+1 andUaj
= Vbj

= e.

�

As we have seen, with addition and multiplication first–
order logic has enough expressive power to defeat the neu-
tral letter. Addition alone is, in many ways much weaker
than addition and multiplication together. For example,
this is witnessed by the fact that the first–order theory of
the natural numbers with+ and∗ is undecidable, whereas
Presburger arithmetic, the first–order theory of the natural
numbers with addition only, can be decided using quantifier
elimination. Also note that at least our technique for pro-
ducing a counterexample cannot work with addition only,
since it is well known (see, e.g., page 12 of [Lyn82]) that
FO[≤,+] cannot count up to any non-constant function.
It is therefore more than conceivable that addition alone is
too weak to make the conjecture fail, and we now show that
this is indeed the case.

3.12 Theorem
Every languageL ∈ FO[≤,+] that has a neutral letter is
definable inFO[≤].

As indicated in the introduction, this theorem follows from
collapse results for first–order queries over finite databases

(e.g., Theorem 5.5 in [BST99]). However the terminology
in which these results are formulated is rather alien to our
setting here, so we will instead use a recent collapse result
on infinite databases in [LS01]. First, however, let us give
an intuitive explanation of the main idea behind the proof.
For simplicity, we concentrate on0–1–stringsu, v of the
same (large) size and discuss what Duplicator has to do in
order to win thek–round+–game onu andv. LetA be the
set of indicesa for whichua = 1, similarly,B = {b / vb =
1}. As in previous proofs, we will work with a setQ of
indistinguishable positions, and chooseu andv such that
A,B ⊆ Q.
Assume that, afteri−1 roundsa(1), . . , a(i−1) have been
played inu, andb(1), . . , b(i−1) in v. Let Spoiler choose
some elementa(i) in u. When choosingb(i) in v, Du-
plicator has to make sure that any Spoiler moves for the
remainingk−i rounds in one structure can be matched in
the other. In particular, this means that any sum over the
a(j) behaves in relation toA exactly as the corresponding
sum over theb(j) behaves in relation toB. For instance, for
any setsJ, J ′ ⊆ {1, . . , i}, it should hold that there is some
a ∈ A that lies between

∑
j∈J a

(j) and
∑

j′∈J′ a(j′) if and

only if there is someb ∈ B that lies between
∑

j∈J b
(j)

and
∑

j′∈J′ b(j
′). But it is not enough to consider simple

sums over previously played elements. Since withO(r)
additions it is possible to generates · a(i) from a(i), for any
s ≤ 2r, we also have to consider linear combinations with
coefficients as large as this. Furthermore, since Spoiler is
allowed to choose either structure to move in each time,
it is necessary to deal with even more complex linear
combinations. One can only handle all these complications
because, as the game progresses, the number of rounds left
for Spoiler to do all these things decreases. This means, for
instance, that the coefficients and the length of the linear
combinations we have to consider decrease: after the last
round, the only relevant linear combinations are simple
additions of chosen elements.
All the technical details necessary to make this strategy
work are worked out in [Lyn82] in order to prove that
for each first–order formula with additionϕ there is a set
Q ⊆ N such thatϕ cannot distinguish between subsets of
Q if they are of equal cardinality, or both large enough.
Drawing on Lynch’s theorem, in [LS01] the authors
prove a theorem, which, specialised to our setting can be
formulated as follows.

Theorem ([LS01], Theorem 3.2)
For every k ∈ N there exists a numberr(k) ∈ N

and an order–preserving mappingq : N → N such
that, for every signatureσ the following holds: If
σU and σV are interpretations ofσ over N, and if
n,m ∈ N with 〈N, σU , n〉 ≡≤

r(k) 〈N, σV ,m〉, then

〈N, q(σU , n)〉 ≡+
k 〈N, q(σV ,m)〉. �
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Here, q(σU , n) is short for σq,U , q(n), where σq,U =
{Rq,U /R ∈ σ}, andRq,U = {q(i) / i ∈ RU}.

Proof of 3.12, using the above theorem:
Assume thatL 6∈ FO[≤], and letu = u1 · · ·un ∈ L,
v = v1 . . . vm 6∈ L, such thatu ≡≤

r(k) v. We construct
stringsU ∈ L, V 6∈ L from u andv, respectively, by in-
serting neutral letters in such a way thatUq(i) = ui and
Vq(j) = vj , for i = 1, . . . , n, j = 1, . . . ,m, whereq is as in
the theorem.u andv defineσA–interpretationsσU

A andσV
A ,

respectively, and the winning strategy of Duplicator onu
andv can easily be extended to〈N, σU , n〉 and〈N, σV ,m〉:
If Spoiler plays a positionai ≤ n on 〈N, σU , n〉, this cor-
responds to a move onu, and Duplicator can choose her
answer according to her winning strategy onv. If Spoiler
plays a positionai > n on 〈N, σU , n〉, then Duplicator
replies withbi := m+(ai−n). (The case where Spoiler
plays on〈N, σV , n〉 is completely symmetric.) Clearly, this
defines a winning strategy for Duplicator. Application of
the theorem above gives us a winning strategy for Duplica-
tor in thek round game for{≤,+} on 〈N, q(σU , n)〉 and
〈N, q(σV ,m)〉. From this, we obtain a winning strategy for
Duplicator in thek round game for{≤,+} on U andV :
Every move of Spoiler inU is translated into a move on
〈N, q(σU , n)〉, and Duplicator’s reply on〈N, q(σV ,m)〉 is
translated back into a move onV . The winning condition
of Duplicator on〈N, q(σU , n)〉 and〈N, q(σV ,m)〉 directly
translates into the winning condition for Duplicator onU
andV , thus proving thatU ≡+

k V . �

4 Discussion

Much of the above can be generalised from strings to arbi-
trary relational structures over the natural (or real) numbers.
This programme is pursued in [LS01]. With regard to the
questions here, the following problems remain open.

• It would be very good to have a proof of Theorem 3.8
that does not rely on [Ajt83, FSS84]. However, since
Theorem 3.8 implies the nonexpressibility of PARITY,
we expect this to be very difficult.

• What is the status of the conjecture forFO[≤, ∗]?
There is a construction of Julia Robinson [Rob49]
defining addition from multiplication and the succes-
sor operation, but in our context this only suffices to
define addition on some numbers (those less thann1/4)
from multiplication and order onall numbers. We con-
jecture that some variant of this construction will suf-
fice to disprove the Crane Beach conjecture forFO[≤
, ∗], perhaps by showing it equivalent toFO[≤,+, ∗].

• Can we find a set of numerical predicates that allows
us to count up tolg(m) n, but not tolgn? What about

counting up to even smaller functions? We conjecture
that the Crane Beach conjecture is true of a system iff
it cannot count beyond a constant.

• Within FO[≤,+, ∗], we can consider the subclasses
of formulas based on the number of quantifier alter-
nations. Thelg–counting operation requiresΣ3, and
the construction of the counter example adds a few
more levels. This leaves a gap between the upper
bound of something likeΣ5 in Theorem 3.5, and a
lower bound ofBC(Σ1) in Theorem 3.11. Since in
BC(Σ2), counting is only possible up to a constant
(cf., [FKPS85]), it is conceivable that the lower bound
can be improved.

• Theorem 3.12 places limits on the power of a partic-
ular uniform circuit complexity class, an “addition-
uniform” version ofAC0. Can we use these tech-
niques to place limits on the power of more power-
ful uniform versions ofAC0 (without using the non-
uniform lower bounds) or on addition-uniform ver-
sions of more powerful classes? This has been done
for one such class, an addition-uniform version of
LOGCFL, by Lautemann, McKenzie, Schwentick, and
Vollmer [LMSV99].

• It would also be of interest to study the conjecture for
certain extensions of FO, such as FO with unary count-
ing quantifiers or FO with modulo counting quanti-
fiers. These each have various versions depending on
the numerical predicates available.
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