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Abstract

A languageL over an alphabe# is said to have aneutral
letterif there is a lettere € A such thatinserting or deleting
e's from any word inA* does not change its membership (or
non—-membership) if.

1 Introduction

Logicians have long been interested in the relative expres-
sive power of different logical formalisms. In the last

twenty years, these investigations have also been mativate
by a close connection to computational complexity theory
— most computational complexity classes have been given

The presence of a neutral letter affects the definability of a characterisations as finite model classes of approprigte lo

language in first—order logic. It was conjectured that it ren
ders all numerical predicates apart from the order predecat
useless, i.e., that if a languadewith a neutral letter is not
definable in first—order logic with linear order, then it istho
definable in first—order logic with any sé&f of numerical
predicates.

We investigate this conjecture in detail, showing thatilsfa
already for\ = {+, «}, or, possibly stronger, for any saf
that allows counting up to the: times iterated logarithm,
1g™), for any constantn.

ics, cf. [Imm98]. In these investigations it became apparen
that in order to describe computation over a finite strugture
a formula has to be able to refer to some linear order of the
elements of this structure. Given such an order, the urévers
of the structure, i.e., the set of its elements, can be ifiedti
with an initial segment of the natural numbers. In a logic
with the capability to express induction we can then define
predicates for arithmetical operations such as addition or
multiplication on the universe, and use them in order to de-
scribe operations on time or memory locations. In weak
logics, however, e.g., first—order logic, defining an oraer r

On the positive side, we prove the conjecture for the caselation does not automatically make arithmetic availabte. |

of all monadic numerical predicates, fov" = {+}, for
the fragmentBC(X,) of first—order logic, and for binary
alphabets.
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fact, even over strings, the expressive power of first—order
logic varies considerably, depending on the set of numlerica
predicates that can be used.

As an example, if the order is the only numerical rela-
tion then the onlyregular languages that can be defined

in first—order logic are the star—free languages. If, how-
ever, for every € N we have available the predicateod,
(which holds for a numbem iff m = 0 (mod p)) then

we can express regular languages that are not starfree,



such as(000 + 001)*. In fact, with these predicates we are used (cf. [Ajt83, FSS84]). The Crane Beach conjecture
can expresall the first—order definable regular languages, would imply this result, since PARITY is a regular language
cf. [Str94]. Thus, even very powerful relations (arithroati known not to be star—free.

relations, or even undecidable ones) are of no further help . . . : .
in defining regular languages. On the other hand, with ad-ln this paper, we investigate the Crane Beach conjecture in
: ' detail. We first show that in general it is not true — in fact,

gg'{c’o’ylﬁj ;zr&(}express languages that are not regular, sUdi} already fails forA” = {+,«}. However, we also show

that the conjecture is true in a number of interesting specia
First-order logic with varying numerical predicates casoal

cases, including the case of addition, i.e., whén= {+}.
be thought of as specifying circuit complexity classes with
varying uniformity conditiongdBIS90]. The language de-
fined by a first-order formula is naturally computed by a
family of boolean circuits with constant depth, polynomial
size, and unbounded fan-in (called € circuits”). The
power of such a family depends in part on the sophistication
of the connections among the nodes. A formula with only
simple numerical predicates leads to a circuit family where
these connections are easily computable. These are calle
“uniform circuits”, and how uniform they are is quantified
by the computational complexity of a language describing
the connections. A formula with arbitrary numerical predi-
cates leads to a circuit family with arbitrary connections —
the set of languages so describable is called “non-uniform
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base theory which is concerned with so—calietlapse re-
sults (cf. [BLOO]). Here one considers a finite data base
embedded in some infinite, ordered domain, and then looks
at locally genericqueries, i.e., queries which are invariant
under monotone injections of the data base universe into the
larger domain. In this setting, a language with a neutral let
&er is the special case of a locally generic (Boolean) query
over monadic databases with background strucfiNte\/),

and the conjecture then can be translated into a collapse for
first—order logic.

We will come back to this in connection with Theorem 3.12.

cuit complexity classes even if they are in the correspandin
non-uniform class. This is an additional motivation for the
study of the expressive power of first-order logic with vari-
ous numerical predicates, as this provides a parametizati
of various versions of “uniformtC°”.

In an attempt to obtain a better understanding of this expres

sive power, Thérien considered the concept péatral let-
ter for a languagd., i.e., a letter that can be inserted into
or deleted from a string without affecting its membership in
L. Since, in the presence of such a letter, membership in

cannot depend on specific (combinations of) letters being in

specific (combinations of) positions, it seemed concewabl

Eric Allender, Pierre McKenzie, and Howard Straubing for
valuable discussions on this topic, many of which occurred
at a Dagstuhl workshop in March 1997. Much important
work on this topic also occurred at various McGill Invi-
tational Workshops on Complexity Theory, particularly on
excursions to Crane Beach, St. Philip, Barbados.

2 Preliminaries
2.1 First-Order Logic

A signatureis a seto containing finitely many relation, or

that neutral letters would render all numerical predicates predicate, symbols, each with a fixed arity. oAstructure
except for the order, useless. With this in mind, Thérien ¢ — U™, o™ consists of a séf®, called theuniverseof

proposed what was later dubbed Bmne Beach Conjec-
ture:

If a language with a neutral letter can be defined
in first—order logic using some s#&f of numerical
predicates then it can be so defined using only the
order relation.

2l and a set® that contains an interpretatide® C (U/*)*

for eachk—ary relation symboR € o.

In this paper, we are concerned almost exclusively with
first—order logic over finite strings. In this context, for an
alphabetA we use the signaturey, = {Q./a € A}
and identify a stringy = wy ---w, € A* with the struc-
turew = ({1,... ,n},0%), whereoy = {Q¥ /acA} and

One particular example of a language with a neutral letterisQ¥ = {i < n /w; = a}, i.€,i € Q¥ < w; = a, for all

PARITY, consisting precisely of tho$e-1-strings in which

a € A.

1 occurs an even number of times. PARITY is not definable In addition to the predicate®, we also havenumerical
in first—order logic — no matter what numerical predicates predicates A k—ary numerical predicat® has, for every



n € N, afixed interpretatio®, C {1,...,n}*. Our prime

example of a numerical predicate is the linear order rela-
tion <. Where we see no danger of confusion (i.e., almost

everywhere) we will not distinguish notationally between a
predicate and its interpretation.

An atomic o—formulais either of the formz; = o,

or P(z1,...,xx), Wwherezy, xo, ...,z are variables and
P € o is ak—ary predicate symbol. First-orderformulas
are built from atomico—formulas in the usual way, using
Boolean connectives, Vv, -, etc. and universal(zx) and
existential @ x) quantifiers.

For every alphabet, and every selV of numerical predi-
cates, we will denote the set of first—orgeyUN —formulas
by FO[N]. We define semantics of first—order formulas in
the usual way. In particular, for a string € A* and a for-
mulay € FO[N] without free variables (i.e., variables not
bound by a quantifier), we will writev = ¢ if ¢ holds on
the stringw. If x4, ...,z are the free variables of, and

if p1,...,pk < |w|, w = @(p1,...,pr) indicates thatp
holds on the stringv with z; interpreted agp;, for every

1 < k.

Every formulap € FON] without free variables defines
the setL, of those A—strings which satisfyp. We say
that a languagé. C A* is definable inF O[N], and write

L € FON), if L = L, for somep € FO[N]. We will
use analogous notation for subsets=6I\], in particular,
we will consider the set; [AV] of formulas which are of the
form 3z, - - - x4, for some quantifier—freé € FON],
and its Boolean closureBC(31[A]). (One can define a
complete hierarchy of class&s[N] andII;[A/] along with
their Boolean closures, using the hierarchy of first-order f
mulas given by the number of quantifier alternations. Butin
this paper we will have need only f&C/(X;[N]).

2.2 Ehrenfeucht—Fraiss Games

One of our main technical tools will be (various versions
of) the Ehrenfeucht-Fris® game In our context, the
Ehrenfeucht—Fraissé game for a set of numerical presticat
N, is played by two players, Spoiler and Duplicator, on two
stringsu, v € A*. There is a fixed numbérof rounds, and

in each round

o first, Spoiler chooses one positian,in «, or a position
b; inv;

e then Duplicator chooses a position in the other string,
i.e., ab; in v, if Spoiler's move was in:, and ang; in
u, otherwise.

After k rounds, the game finishes with positians. . . , ax
chosenin: andby, ... , by chosen irv. Duplicator has won
if the mappings; — b;,7 = 1,... ,k, is apartial 0 4 UN—
isomorphismi.e., if

o foreveryi,j <k,a; =a; < b, =0b,,

o for every: < k, a; andb; carry the same letter, i.e.,
Uq, = Up,;, and

i

e for every m—ary predicateP? < N, and every
i1,...,0m < k, it holds thatP(a;,,... ,a;,) <
P(bi17 s abim)'

If Duplicator has a winning strategy in the-round game
for A on two strings: andv, we writeu =} v. The funda-
mental use of the game comes from the fact that it charac-
terises first—order logic (c.f., e.g., [EFT94]). In our ocextt

this can be formulated as follows:

2.1 Theorem (Ehrenfeucht, Fraissé)

A languagel. C A* is definable inFO|N] iff there is a
finite subsetN” of A" and a numbet such that, for every
u € L,v ¢ L, Spoiler has a winning strategy in theround

game for\/’ onwu andv. O
We will also use the following variant of the game:
In the single-round—game fot\" on two stringsu, v

o first, Spoiler chooses positionsay, ... ,ax in u, or

bi,...,bg inwv;

e then Duplicator chooséspositions in the other string,
i.e., positionsy, ... , b; in v, if Spoiler's move was in
u, ai,...,ax N u, otherwise.

Again, Duplicator wins iff the mapping; — b;, i =
1,...,k, is a partial isomorphism. Clearly, if Duplicator
has a winning strategy for the single—roultdgame oru
andv, then she also has one for the single—roiirgame,
forall h < k.

This game characterises the expressive power

BC(%1[N]):

of

2.2 Theorem

A languageL C A* is definable inBC(X;[N]) iff there

is a finite subset\V” of A" and a numbek such that, for
everyu € L, v ¢ L, Spoiler has a winning strategy in the
single-roundi—game for\V’ onu ando. O

3 The Crane Beach Conjecture

Intuitively, since numerical predicates can only talk atou
positionsin strings, it seems that they can only help ex-
press properties that depend on certain (combinations of)
letters appearing in certain (combinations of) positiorise
Crane Beach Conjecture (named after the location of its
first, flawed, proof) is an attempt to make that intuition pre-
cise.



3.1 Definition (Neutral letter)
Let L C A*. Alettere € A is calledneutralfor L if for
anyu,v € A* it holds thatuv € L <= uev € L. O

We define a languagd on alphabef{0,1,a} as follows.
For each positive integet, A will contain a string con-
sisting of the2* binary strings of length, in order, sep-

o ) arated by’s. The total length of thé’th string in A is thus
Thus membership in a language with a neutral letter cannotok (x4 1) — 1. The first three strings it are thusOal,

depend on the individual positions on which letters are: any (0401410411, and
letter can be moved away from any position by insertion or
deletion of neutral letters. It seems therefore conceé/abl
that for every such language, if it can be defined at all in
first—order logic then it can be defined using the linear order Our desired languagg has alphabeft0, 1, a, e} and is sim-

000a001a010a011a100a101a110a111.

as the only numerical relation.

3.2 Definition (Crane Beach Conjecture)
Let N be a set of numerical predicates. We say that

ply the set of strings over this alphabet such that the string
obtained by deleting all thels in w is in A. Clearly B has
a neutral lettee, as inserting or deleting's cannot affect
membership inB. Clearly B is not regular, so it cannot be

Crane Beach conjecture is true fov, iff every language N F'O[<]. Itremains for us to prove:

L € FO|<,N] that has a neutral letter is also definable in

FO[<]. 0 3.6 Lemma

B is definable inf'O[+, .
It turns out that the conjecture is true for some sets of nu-
merical predicates, but not for all. In fact, it fails for thet
N = {+,x}. This set of predicates is particularly important
because'O[+, *] corresponds to the most natural uniform
version of the circuit complexity clas$C® [BIS90].
Our counterexample to the Crane Beach conjecture make
use of the well-known but somewhat counterintuitive apilit
of FO[+, ] formulas tocountletters up to numbers poly-
logarithmic in the input size:

Proof:

We need to formulate a sentencerd®|+, «| that will hold
for a string exactly if it is inB, that is, exactly if its non-
neutral letters form a string iA. Recall that a stringy is in

SA exactly if for some numbeék, w consists of th&* binary
strings of lengthk, in order, separated hys.

Our sentence will assert the existence of a nunitbsuch
that the input string, witke’s removed, is the:’th string

in the languaged. Since the length of thé'th string in
A is exponential ink, and a valid input string must be at
least as long, any valillmust be at modg n. Therefore by
Proposition 3.4, the systefO[+, | is able to count letters
in any interval in the input string up to a limit &

We first assert that there are exadtly’'s and nol’s before
the firsta, exactlyk 0’s and1’s between each pair af’s,
exactlyk 1's (and no0’s) after the last. It then remains to
assert that each string 0% and1’s between twau’s is the
successor of the previous one. To do this, we assert that for
every positiory containing & or 1:

3.3 Definition (Definibility of Counting)

Let f(n) < n be anondecreasing function frdito N. We
say that a logical system caount up tof(n) if there is a
formulay such that for every, and for everyw € {0,1}",

w = ¢(c)

where#; (w) is the number of ones im.

<~ c< f(n)Ae=#1(w),

We will need to consider two functions with similar nota-
tion. We write the base-two logarithm of aslgn, the
k'th power of this logarithm aglg n)*, and thek'th iter-
atedlogarithm adg® n. For examplelg'® n is the same
aslg(lgn).

¢ Ifthereis a positionw left of y such that there is@or
1 aty and exactlyk — 1 0’s and1’s betweenw andy,

Thenw has the same letter gaunless

x has the unique betweenz andy, = has the next
to the right ofz or is the rightmost position if there is
no sucha,

3.4 Proposition ([AB84, FKPS85, DGS86, WWY92]) .
The systemF O+, ] can count up tglgn)* for anyk. If
f(n) = (Ign)*M), and A is any set of numerical predi-
cates, ther#’O[<, N] cannot count up tg(n).

w hasl, there are n@’s betweenv andz, y has0, and

there are nd’s betweeny andz, or
3.5 Theorem

There is a languagg with a neutral letter that is definable .
in FO[+, *] but notin FO[<].

w has0, there are n@’s betweenv andz, y hasl, and
there are n®’s betweeny andz.

Proof: This proves Lemma 3.6 and thus Theorem 3.5. O



Theorem 3.5 now follows immediately. O

thatz lies in the first, respectively last, block of some per-
mutation;next(x) will denote the first position in the block

The construction above crucially uses the fact that we candirectly to the right ofblock(x). Our formula fori and j

count up tolgn in FO[+, x]. We can strengthen the con-

now expresses the following for all s such thap < r < p/

struction so that it provides a counterexample using only andg < s < ¢':

counting up tdg™ n, them times iterated logarithm of.
However, we do not yet know whether this strengthening is
non-trivial — it may be that any set of numerical predicates
that allows counting up tbg(m) n also allows counting up
tolgn.

3.7 Proposition

If the systemFO[<, \] can count up tdg™ n for some
m, then there is a language with a neutral letter that is
definable inf'O[<, ] but notin FO[<].

Proof:
We must show that counting up IQ(’”) n suffices to pro-

vide a counterexample to the Crane Beach conjecture. We

give the construction in some detail for = 2, indicating

how to generalize it to arbitrary values for. Take the al-
phabet{a, b, 0,1, e} and for everyk consider strings of the
form (b(0 + 1) (a(0 + 1)¥)*)*b. Finally, adde as a neutral
letter. ¢ andb are used as markers, and we interprettthe

1—-substring between any two successive markers as the bi-

nary representation of some number betweand2 — 1.

If z is any position, we definélock(x) to be the interval
between the two markers nearestandnum(x) to be the
number represented by tle-l subsequence iblock(z).
Using a formula that can count up kcand the construction
from the proof of Theorem 3.5 we can write formulas ex-
pressingrum(z) = num(y) andnum(z) + 1 = num(y),

e num(r) = num(s) — num(next(r)) =
num(next(s))
unless last(r) or {num(r),num(next(r))} N

{num(i), num(j)} # 0

(num(r)=num(s) N num(next(r))=num(i))
num(next(s))=num(j)

—

o (num(r)=num(s) A num(next(r))=num(j)) —

num(next(s))=num(i)

(num(s)=num(yj) A =last(s))
num(next(s))=num(next(i))

(num(s) = num(i) A—last(s)) — num(next(s))
num(next(j))

(first(r) A first(s) A num(r) # num(i)) —
num(r) = num(s)

= num(i)) —

o (first(r) A first(s) A num(r)
num(s) = num(j).

Thus we can construct the desired formularifor= 2.

We can then iterate this process, using an additional marker
symbolc. The resulting formula stipulates that our string
represent all permutations of all the permutations of the
numbers), ... ,2¥ — 1. This will guarantee that string to
be of length(((2¥)!)!), etc. O

respectively. We can now express easily that between ev-

ery successive occurences of tk@each number frorfl to

It is not difficult to code the languages above using only

K . : . _ _
2% — 1 is represented precisely once. In other words, this 1y non—neutral letters: just apply the homomorphism

formula stipulates that thfu, 0, 1}—substring between two
b's represent a permutation of the numbeys. . , 2% — 1.

{a,b,0,1,e}* — {0,1,e}* which mapse to e, a to 010,
bt00110,0t0 01110, and1 to 011110, for example. How-

tions are represented. Altogether, our formula defines thedefeating the conjecture.

set of those strings which consist of a sequence of permuta-

tions of the numbers, ... ,2*—1, for somek, containing

every permutation at least once. In particular, every such

string has lengti(2*!), whereas counting is only required
up tok = O(Iglg(2*!)).

To be more precise, the formula forces all permutations to
It says that for every representedProof:

be present as follows.
permutationr (starting, say, with & at positionp), and
every pair of positiong, 7 within that permutation (i.e.,
p < i < j < p, wherep' is the smallest position- p
that carries &), there is a permutation (betweenb’s at ¢
and¢’, say) which is equal ter, except thatvum(i) and
num(j) are swapped. In what follows we will use abbre-
viations first(z) andlast(zx) for formulas which express

3.8 Theorem

If |[A| = 2 then for every se\ of numerical predicates and
every languagd. C A* with a neutral letter it holds that
L e FOIL,N]= L € FO[K].

Let L be a language o#il, e} with e as a neutral letter.
Consider the set of numbetssuch that ™ is in L and17+!

is not. If this set is finite, it is easy to see thais regular
and definable i"O[<]. Otherwise, we will show that no
family of unbounded fan-in circuits with constant depth and
polynomial size can recognidZe— it follows from [BIS90]
that L is not definable iFFO[<, N] for any V.



For these particular values af, any circuit deciding

L on strings of length2n would compute a symmet-
ric function of the inputs saying yes on inputs with
1's and no on inputs with. + 1 ones. Following the
construction of [FKPS85], a constant-depth poly-size

must be anonochromatic pathn the graph of length at least
m. We create: from y, andv from z, by placing the letters

of the shorter strings in the locations given by the vertices
of these path (the “special locations”), and making all othe
letters neutral. We must now explain how the Duplicator

combination of these circuits can be used to computecan win the game witk and A on the strings: andv (the

the parity function on inputs of this size. If the circuit
deciding L had constant depth and polynomial size, then
this new circuit would compute the parity function.itC°

for infinitely many input sizes, violating [Ajt83, FSS84]1

Since PARITY is a non-star—free regular language over
{0,1}* and has a neutral letter, Theorem 3.8 implies the
nonexpressibility of PARITY in first—order logic with arbi-
trary numerical predicates (i.e., AL Note, however, that

it directly uses the existing proofs of the nonexpressipili
of PARITY to get this result.

“Big Game”).

The Duplicator will model the Big Game by a series of
“small games”, where she already has a winning strategy
for each. One small game is played on the stripgand

z using only<, and there is another small game (usiag
and color only) for each interval between special locations
Whenever the Spoiler moves in the Big Game, the Dupli-
cator translates this move into thez small game by mov-
ing to the position matching the next special position to the
right. She also translates it into the small game for thatint
val. The Duplicator’s reply in the Big Game is determined

On the other hand, the following special case of the Craneby her correct move in thg-z game, and her correct move

Beach conjecture can be proved directly:

3.9 Theorem

in the special small game for that particular interval.
After £ moves Delilah must win the original Small Game
and all the interval Small Games, as she has made at most

The Crane Beach conjecture holds for the set of all monadick moves in each. It is easy but tedious to look at the input

relations.

Proof:

Let L be alanguage with a neutral letter that is not definable
in FO[<]. This means that for any number of moves
there must be two stringg € L andz ¢ L such that the
Duplicator wins thek-move game (using onlg) ony and

z. By adding neutral letters we can makandz have the
same lengthn.

Now let A be any monadic predicate. We will show that
L is not definable in’O[<, \] as follows. We will use\

to construct two strings € L andv ¢ L from y andz by
suitable padding with neutral letters. (The lengthu@ndv

will be a suitably large numberto be defined below.) Then
we will show how the Duplicator can win tHemove game
onu andv, with both< and A/ as numerical predicates.

The predicateV' may be regarded asaloring of the in-
put positions froml to n, with finitely many colors. Ifr
ands are input positions, consider the colored string given
by the interval fromr to s, with each input position hold-

ing a neutral letter. For any two such strings, consider thetrue iffi =0 mod p.

k-move game with onh< as numerical predicate and the

colors considered as the input. Let two strings be consid-

ered equivalent iff the Duplicator wins this game on them.

predicates, order, equality, and position color in the Big
Game and verify that Delilah has won that as well. [

We can use Theorem 3.9 to derive the following interest-
ing generalization of the nonexpressibility of PARITY. But
again, we do not get aimdependenproof of this fact be-
cause the existing proofs are used crucially to obtain the
results in [BCST92].

3.10 Corollary

The Crane Beach conjecture holds for all regular languages.
That is, for every sel of numerical predicates and every
regular setl. with a neutral letter it is true that thdt €
FO[<,N]= L € FO[K].

Proof:

This follows from Theorem 3.9 and the fact, proven
in [BCST92], that every regular language definable in
FOI<, N] (using any setN' of numerical predicates) is
definable inFO[<, {mod, /p € N}|, wheremod, (i) is

O

Although according to Theorem 3.9 the Crane Beach con-
jecture holds for the set of all unary relations, it is noetru

Since the language defined by this game is regular, there aréor all binary relations, sincé'O[<, +, ] = FO[<, Bit],

only afinite numberof equivalence classes. We now define
a colored undirected graph whose vertices are thesput
positions and where the color of the edge from position

c.f., [Imm98g]. In fact, it already fails for the set of all utya
functions, or for the set of all linear orderings. This folt®
from the existence of a unary functigh: N — N (see

to positions represents the equivalence class of the coloredthe proof of Theorem 3 in [Sch97]) and a §20f linear or-

string for that interval.
By the Erdos-Szekeres Theorem [ES35], as long.as
greater thamn® whered is the number of edge colors, there

derings (in fact, four order relations suffice, cf.[ScScigls
thatFO[<, +,+] = FO<, Bit] = FO<, f] = FO <, 0.



We can also consider special cases of the Crane Beach confo complete this move,

jecture based on restrictions on the type of logical formula
allowed. For example, with arbitrary sets of numerical+ela

tions the conjecture does hold for Boolean combinations of

¥;—formulas:

3.11 Theorem
Let A be a set of numerical predicates, and lebe a

language with a neutral letter that is definable in the classSuchbg., ..

BC(21[<,N]). ThenL € BC(%4[<]).

Proof:

We must show that for any s@t of numerical predicates
and any languagé with a neutral letterL is definable in
BC(21[<, NV]) iffitis definable inBC'(X1[<]).

Using Theorem 2.2, we first show the proposition for the
special caséV = {suc, min, max}, wheresuc is the suc-
cessor relationuc(n, m) iff m = n+1, (w,n) = min(n)

iff =1, and(w, n) = max(n) iff n = |w|.

Lete be the neutral letter, and assume thag BC'(X4[<]).
Then, for eveny, there are strings € L, v ¢ L such that
Duplicator wins the single-rounk—game for< on u,v.
We can assume andv to be of the same lengtn (if
not, appendv|+k e’s tou and|u|+k €’s tov). We con-
struct stringsU from w and V' from v such thatU € L,

V ¢ L, and Duplicator wins the single—rourigd-game
for {<, suc,min,max} on U,V. ThenL ¢ BC(3;[<

, suc, min, max|), which proves the assertion, by contrapo-
sition.

In order to construcl/, insert2k—1 e’s between each pair
of adjacent positions im, as well as at the beginning and
the end ofu. More preciselyl/ = Uy - - - Upy2p+26—1, With
Ujgk = uyj, andeg;Hi = e, for anyj < m, i < 2k.
Similarly, we construct” from v. Sincee is neutral, we
haveU € L,V ¢ L.

Assume that Spoiler chooses positians. . . , ax in U (the

other case is symmetric). Some (possibly all, or none) of NV, < on variablesey, . ..

theU,; will be neutral letters, others will be from \ {e}.
For the sake of notational simplicity we will assume, with-

out loss of generality, tha,,,... ,U,, € A\ {e}, and
Uaysr = -+ = Uy, = e. Then eachy; with j < g is of
the forms;2k, for somes; € {1,...,m}. Now Duplica-

tor simulates a move of Spoiler in the game foron u, v

in which Spoiler pebblesy, ... , s, onu, and finds her re-
ply, s}, ..., s, onv, according to her winning strategy. She
then sets, for eacfrom 1 throughg, b; to bes’2k. Then
for eachyj, j/ < g it holds that

o b; #£by+1 andaj #ay+1,
° bj < bj/ <~ aj < a;, and

=U,.

* %y‘:U%:us:‘ j

Duplicator has to define
bg+1,- - -, bg such thatV}, = ... =W, = e and that

forall 5,7 <k

q+1

o b; <by <= a; <ay,
e bj=by+1 < a; =ay+1,and
0 bj=1 = aj:Lbj:|V| <~ aj:|U|-

., b, can easily be found, since between any
two differentb;, b; with i,j < ¢, there are at leastk—1
positionsp whereV,, = e.

Now let N be an arbitrary finite set of numerical predicates
and assume that ¢ BC(X;[<]). From what we have
just shown it follows that, for everk, we can find strings

u € L, v ¢ L of the same lengthn such that Duplica-
tor has a winning strategy in the single—roid-2—game
for <, suc, min, max onu, v. We want to construct strings
U andV by inserting neutral letters inte andv, respec-
tively, in such a way that the original letters afandv

are moved onto positions, ... , i, which are, in a cer-
tain sense, highly indistinguishable. To this end, we define
for every numben, a coloring of subsets of siZze< 2k of
{1,...,n}. This coloring was inspired by the one used by
Straubing in [Str01], in his proof of Theorem 8. There he
used the following extension of Ramsey’s theorem, which
will also help us here:

Theorem Let m, k,cq,...,c, > 0, withk < m. Letn
be sufficiently large as a function at and thec's. If all
h—element subsets ¢fl, ... ,n}, with 1 < h < k, are col-
ored from a set of;, colors, then there exists am—element
subsef" of {1,... ,n} suchthatforeachwith1 < h <k
there exists a colat;, such that alh—element subsets af
are coloredky,. O

Let7 = {7,..., 74} be the set of all atomic formulas over
Tk Y1, - -+ > Yn. TheN, <-type
of a tupler = (r1,...,rx) € {1,...,n}* with respect
to ah—elementseb = {p1 < --- < pi}, a(r, ), is the
set of all those formulas df that are satisfied when; is
interpreted as;, andy; asp,, fori < kandj < h.

We now color, for each numberand everyh < 2k, every
h—elementsef = {p1 < --- < pp} C {1,...,n} with
the set of all thosex C 7 for which there is &-tupler
over{1,...,n} such thatr hasN-type« with respect to
S. Clearly, for everyh < 2k there is a fixed number of
possible colors, independentof The extension of Ram-
sey’'s theorem stated above tells us that for large enaugh
we can find numberg;, < --- < i, < n such that, for
everyh < 2k, all h—element subsets df;, ... ,i,,} have
the same color. We now insert neutral letters iatim such

a way that in the resulting string we havel,, = u, for
s=1,...,m,andU; = eforalli & {i1,... ,im}. Inthe



same way we construgt fromw. Letus calliq, . ..
special positions

We now show that Duplicator has a winning strategy in the
k—game for<, N on U, V. Assume that Spoiler chooses
a = ai,...,a in U (again, the other case is symmet-
ric). Then Duplicator finds, for every; the next small-
est special position,, i.e, is;, < a; < is41. Let

S ={is;,is,41/J = 1,... , k}. Duplicator now simulates

a move of Spoiler in thek+2—game for<, suc, min, max
onw, v, in which Spoiler plays all the points; ands;+1,

for j 1,...,k onu, as well asmin andmax. Using
her winning strategy in this game, Duplicator finds a reply
with which she wins the game fot, suc. Therefore, we
can safely call these points, t;+1, forj = 1,... ,k, and

we know thatus, = v, forj = 1,... k. LetT be the
set{is;,it;41/j = 1,... ,k}. |T| = |S| = h < 2k, so

S andT have the same colour, and this implies that there is
a tupleb = (by,...,bx) with the same\V-type asa, and
with w(b,T) = w(a, S). Duplicator now puts her pebbles
onby,..., b, in V. We have to check the winning condi-
tions. By constructiony(a, S = (b, T'). In particular, this
implies that

,im the

,ar) and(by, ... , by) have the sam@&/—type,

[ ] (al,...
® a; < Qjr <= bj < bj/, for allj,j’,

o if a; = i, thenb; = iy, hencel,;, = us, = vy,
Vb, If a; is not of this form then,, < a; < ig;41,
consequentlyi;, < b; <ig;41 andU,; = V4, = e.

d

As we have seen, with addition and multiplication first—
order logic has enough expressive power to defeat the neu
tral letter. Addition alone is, in many ways much weaker
than addition and multiplication together. For example,
this is witnessed by the fact that the first—order theory of
the natural numbers with- andx is undecidable, whereas
Presburger arithmetic, the first—order theory of the natura
numbers with addition only, can be decided using quantifier
elimination. Also note that at least our technique for pro-
ducing a counterexample cannot work with addition only,
since it is well known (see, e.g., page 12 of [Lyn82]) that
FO[<, +] cannot count up to any non-constant function.

It is therefore more than conceivable that addition alone is
too weak to make the conjecture fail, and we now show that
this is indeed the case.

3.12 Theorem
Every languagd. € FO<,+] that has a neutral letter is
definable inFO<].

As indicated in the introduction, this theorem follows from
collapse results for first—order queries over finite databas

(e.g., Theorem 5.5 in [BST99]). However the terminology
in which these results are formulated is rather alien to our
setting here, so we will instead use a recent collapse result
on infinite databases in [LS01]. First, however, let us give
an intuitive explanation of the main idea behind the proof.

For simplicity, we concentrate of+1-stringsu, v of the
same (large) size and discuss what Duplicator has to do in
order to win thek—round+—game on: andv. Let A be the

set of indices: for whichu,, = 1, similarly, B = {b /v, =

1}. As in previous proofs, we will work with a s&p of
indistinguishable positions, and choasend v such that

A, B CQ.

Assume that, aftei—1 roundsa(®, .., "1 have been
played inu, andb™ .. b0~ in v. Let Spoiler choose
some element. in u. When choosing® in v, Du-
plicator has to make sure that any Spoiler moves for the
remainingk—i: rounds in one structure can be matched in
the other. In particular, this means that any sum over the
a) behaves in relation tel exactly as the corresponding
sum over thé?) behaves in relation t&. For instance, for
any setsJ, J' C {1,..,4}, it should hold that there is some

a € Athatlies betwee ., o) andy” . ;, V") if and
only if there is somé € B that lies betweer}_,_ , b

andy> ..., @), But it is not enough to consider simple
sums over previously played elements. Since vfr)
additions it is possible to generatea” from a9, for any

s < 2", we also have to consider linear combinations with
coefficients as large as this. Furthermore, since Spoiler is
allowed to choose either structure to move in each time,
it is necessary to deal with even more complex linear
combinations. One can only handle all these complications
because, as the game progresses, the number of rounds left
for Spoiler to do all these things decreases. This means, for
instance, that the coefficients and the length of the linear
combinations we have to consider decrease: after the last
round, the only relevant linear combinations are simple
additions of chosen elements.

All the technical details necessary to make this strategy
work are worked out in [Lyn82] in order to prove that
for each first—order formula with additiop there is a set

@ C N such thatp cannot distinguish between subsets of
Q if they are of equal cardinality, or both large enough.
Drawing on Lynch’s theorem, in [LSO1] the authors
prove a theorem, which, specialised to our setting can be
formulated as follows.

Theorem ([LS01], Theorem 3.2)

For everyk € N there exists a number(k) € N
and an order—preserving mapping : N — N such
that, for every signatures the following holds: |If
oV and ¢V are interpretations o> over N, and if
n,m € N with (N,o" n) Erg(k) (N,oV,m), then
(N,q(0",n)) = (N,q(c",m)). O



Here, q(cV,n) is short for o?Y, q(n), where 04V =
{R*Y /R € ¢}, andR%Y = {q(i) /i € RY}.

Proof of 3.12, using the above theorem:

Assume thatl, ¢ FO<], and letu = w;---u, € L,

v =v1...0m & L, such thatu zf(k) v. We construct
stringsU € L,V ¢ L from u andwv, respectively, by in-
serting neutral letters in such a way thaf;) = u; and
Vagy = vj,fori=1,...,n,j=1,... ,m,wheregisasin
the theoremu andv defineo 4—interpretations’{ ands;,
respectively, and the winning strategy of Duplicatorwon
andv can easily be extended b1, oV, n) and(N, o"', m):

If Spoiler plays a positiom; < n on (N, sV, n), this cor-
responds to a move om, and Duplicator can choose her
answer according to her winning strategy @nlf Spoiler
plays a positiora; > n on (N,o",n), then Duplicator
replies withd; := m+(a;—n). (The case where Spoiler
plays on(N, ¢V, n) is completely symmetric.) Clearly, this
defines a winning strategy for Duplicator. Application of
the theorem above gives us a winning strategy for Duplica-
tor in the k round game fo{ <, +} on (N, ¢(¢¥,n)) and
(N, g(¢v",m)). From this, we obtain a winning strategy for
Duplicator in thek round game fo{<,+} on U andV:
Every move of Spoiler i/ is translated into a move on
(N, q(cV,n)), and Duplicator’s reply onN, g(¢¥',m)) is
translated back into a move dn. The winning condition
of Duplicator on(N, ¢(¢¥, n)) and(N, ¢(¢"', m)) directly
translates into the winning condition for Duplicator 6h
andV/, thus proving that/ =/ V. O

4 Discussion

Much of the above can be generalised from strings to arbi-

trary relational structures over the natural (or real) narsb
This programme is pursued in [LS01]. With regard to the
guestions here, the following problems remain open.

e It would be very good to have a proof of Theorem 3.8
that does not rely on [Ajt83, FSS84]. However, since
Theorem 3.8 implies the nonexpressibility of PARITY,
we expect this to be very difficult.

What is the status of the conjecture f&lO[<, *]?
There is a construction of Julia Robinson [Rob49]
defining addition from multiplication and the succes-
sor operation, but in our context this only suffices to
define addition on some numbers (those less thah)
from multiplication and order oall numbers. We con-
jecture that some variant of this construction will suf-
fice to disprove the Crane Beach conjecturefe <

, x|, perhaps by showing it equivalent fO[<, +, «].

Can we find a set of numerical predicates that allows
us to count up tag™ n, but not tolg n? What about

counting up to even smaller functions? We conjecture
that the Crane Beach conjecture is true of a system iff
it cannot count beyond a constant.

e Within FO[<, +, ], we can consider the subclasses
of formulas based on the number of quantifier alter-
nations. Theg—counting operation requiréss, and
the construction of the counter example adds a few
more levels. This leaves a gap between the upper
bound of something like:; in Theorem 3.5, and a
lower bound of BC'(¥;) in Theorem 3.11. Since in
BC(%,), counting is only possible up to a constant
(cf., [FKPS85]), it is conceivable that the lower bound
can be improved.

Theorem 3.12 places limits on the power of a partic-
ular uniform circuit complexity class, an “addition-
uniform” version of ACY. Can we use these tech-
nigues to place limits on the power of more power-
ful uniform versions ofAC° (without using the non-
uniform lower bounds) or on addition-uniform ver-
sions of more powerful classes? This has been done
for one such class, an addition-uniform version of
LOGCFL, by Lautemann, McKenzie, Schwentick, and
Vollmer [LMSV99].

It would also be of interest to study the conjecture for
certain extensions of FO, such as FO with unary count-
ing quantifiers or FO with modulo counting quanti-
fiers. These each have various versions depending on
the numerical predicates available.
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